
CHANGES IN MY KNEE ARTHROPLASTY PRACTICE?

Jean-Noel Argenson, Sebastien Parratte, Matthieu Ollivier, Xavier Flecher

Center for Arthritis surgery

Sainte Marguerite Hospital, Marseille, France

CHANGES IN MY ENVIRONMENT

nstitute for Locomotion

« A Project for excellence »

Bone and Joint Radiology

IML 3

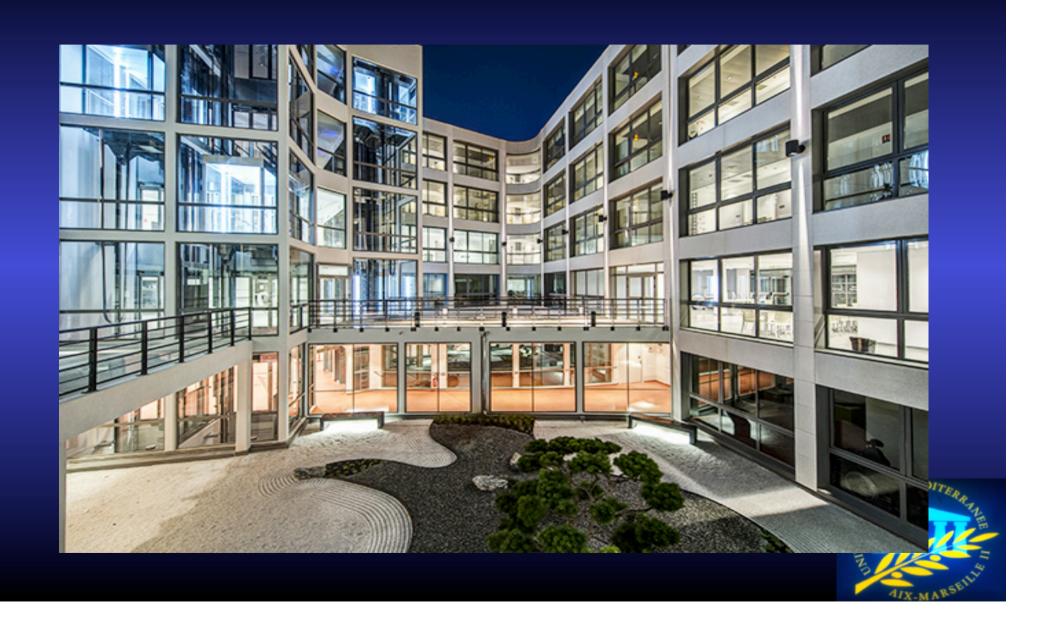
Physiotherapy

Orthopedic Surgery

Rhumatology

Sport Med & Trauma

Environment for patient



Environment for surgeon

Environment for Health Team

Environment for Teaching

Environment for Research

Des partenaires

Patrick CHABRAND

Institut des Sciences du Mouvement

UMR 6233 CNRS & Université de la Méditerranée Groupe Interdisciplinaire de Biomécanique Ostéoarticulaire Faculté des Sciences du Sport, CP 910

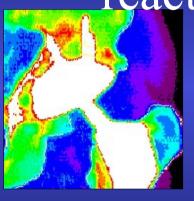
av. de Luminy F-13288 Marseille cedex 09 (FRANCE)

: (33) (0)4 91 26 62 38 (33) (0)4 91 41 16 91

□ patrick.chabrand@univmed.fr
 Web : http://www.laps.univ-mrs.fr/

Groupe Interdisciplinaire de Biomécanique Ostéoarticulaire

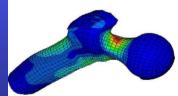
Une équipe pluridisciplinaire au service de votre entreprise


Research

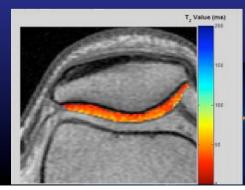
Kinematics

Motion

Implant reaction

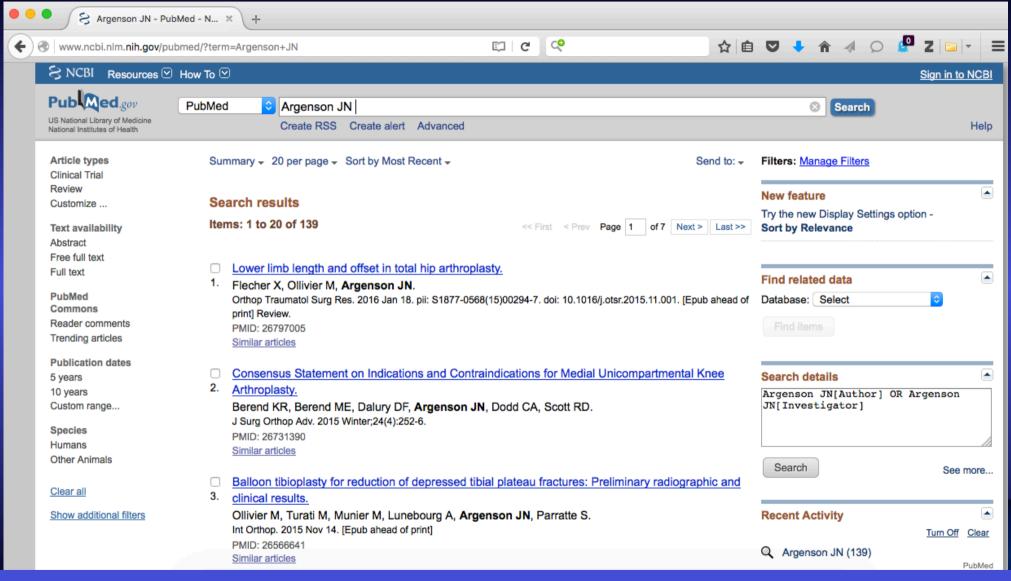


- >Knee
- >Trauma



Osteoporosis

Osteoarthritis



Building a team

Changes in my practice during these last three years?

Last 3 years, referenced publications related to the knee practice: 32

CHANGES IN MY APPROACH TO THE PATIENT

New Expectations

What is a "young" arthritic Knee?

The New Arthritic Patient and Arthroplasty Treatment Options

By Jean-Noël A. Argenson, MD (moderator), Sebastien Parratte, MD, Antoine Bertani, MD, Jean-Manuel Aubaniac, MD, Adolph V. Lombardi Jr., MD, Keith R. Berend, MD, Joanne B. Adams, BFA, Jess H. Lonner, MD, Ormonde M. Mahoney, MD, Tracy L. Kinsey, MSPH, Thomas K. John, MD, and Michael A. Conditt, PhD

Patient Perception

COPYRIGHT © 2001 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED

Patients' Expectations of Knee Surgery

BY CAROL A. MANCUSO, MD, THOMAS P. SCULCO, MD, THOMAS L. WICKIEWICZ, MD, EDWARD C. JONES, MD,
LAURA ROBBINS, DSW, RUSSELL F. WARREN, MD, AND PAMELA WILLIAMS-RUSSO, MD, MPH

Investigation performed at the Outcomes Unit, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 404, pp. 172-168 © 2002 Lippincoff Williams & Wilkins, Inc.

What Functional Activities Are Important to Patients With Knee Replacements?

Jennifer M. Weiss, MD*; Philip C. Noble, PhD*;
Michael A. Conditt, PhD** Harold W. Kohl, PhD*; Seth Roberts, BS*;
Karon F. Cook, PhD*; Michael J. Gordon, MD*;
and Kenneth B. Mathis, MD*

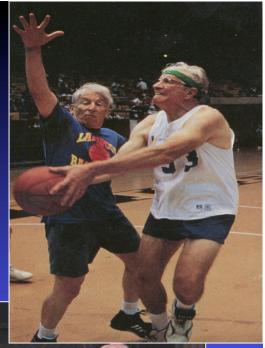
Our Clinical Experience

Acta Orthopaedica 2015; 86 (1): x-x

Lower function, quality of life, and survival rate after total knee arthroplasty for posttraumatic arthritis than for primary arthritis

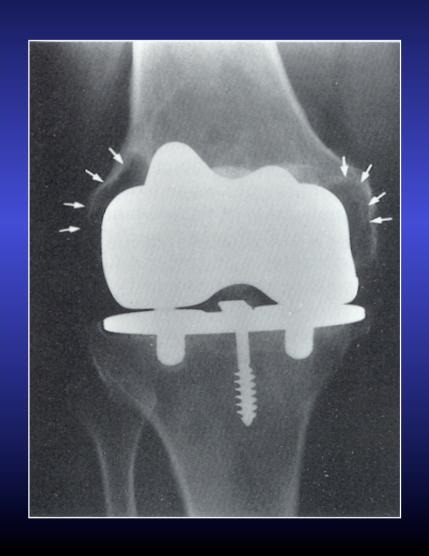
Alexandre LUNEBOURG ^{1,3}, Sebastien PARRATTE ^{1,3}, André GAY ^{2,3}, Matthieu OLLIVIER ^{1,3}, Kleber GARCIA-PARRA ¹, Jean-Noël ARGENSON ^{1,3}

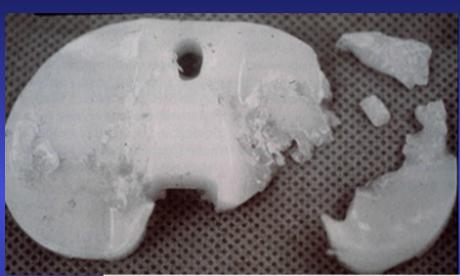
Increased number of patients involved in not recommended activities after TKA


Out of 1206 patients:

- 17% involved in not recommended or high impact activities
- Mean UCLA activity score = 7.1
- Regularly participate in active event, such as bicycling= 75%

The Journal of Arthroplasty Vol. 23 No. 3 2008


Patient-Reported Activity Level After Total Knee Arthroplasty


Diane L. Dahm, MD, * Sunni A. Barnes, PhD, † Jeffrey R. Harrington, MD, † Siraj A. Sayeed, MD, * and Daniel J. Berry, MD*

Consequences for Arthroplasty?

Medial unicompartmental knee replacement in the under-50s

VOL. 91-B, No. 3, MARCH 2009

S. Parratte.

I.-N. A. Argenson,

O. Pearce.

V. Pauly.

P. Auguier,

I.-M. Aubaniac

From Aix-Marseille University, Marseille, France

We retrospectively reviewed 35 cemented unicompartmental knee replacements performed for medial unicompartmental osteoarthritis of the knee in 31 patients \leq 50 years old (mean 46, 31 to 49). Patients were assessed clinically and radiologically using the Knee Society scores at a mean follow-up of 9.7 years (5 to 16) and survival at 12 years was calculated. The mean Knee Society Function Score improved from 54 points (25 to 64) pre-operatively to 89 (80 to 100) post-operatively (p < 0.0001). Six knees required revision, four for polyethylene wear treated with an isolated exchange of the tibial insert, one for aseptic loosening and one for progression of osteoarthritis.

The 12-year survival according to Kaplan-Meier was 80.6% with revision for any reason as the endpoint. Despite encouraging clinical results, polyethylene wear remains a major concern affecting the survival of unicompartmental knee replacement in patients younger than 50.

- UKA = reliable solution for unicompartmental arthritis in active patients younger than 60
- QOL restoration and return to physical activities (study including UCLA and KOOS scores)
- Wear remains a problem

Full poly or metal-back?

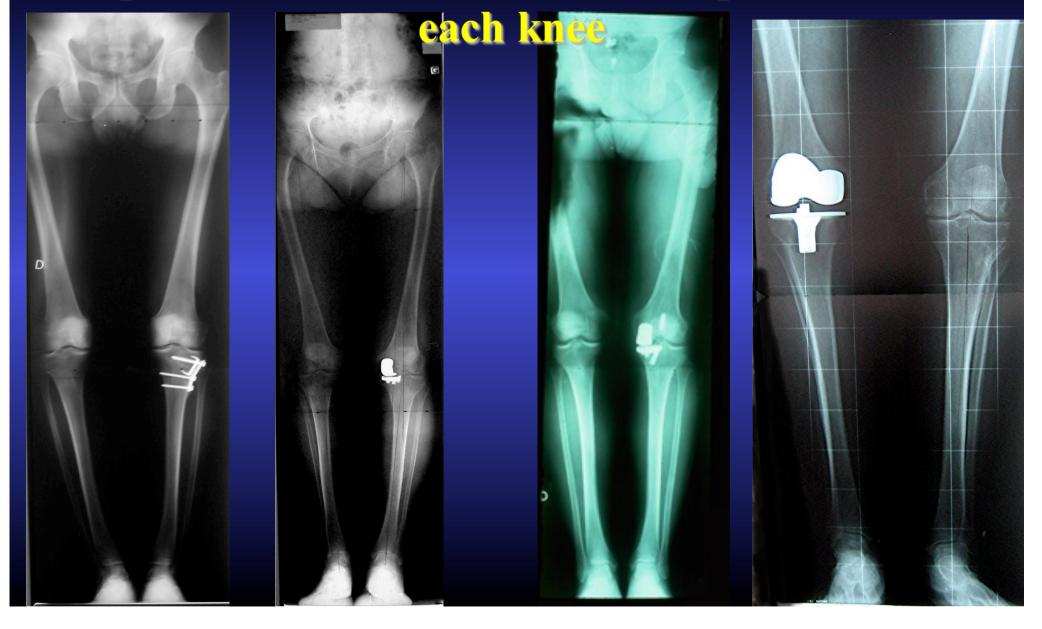
Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-014-3392-8

KNEE

Is isolated insert exchange a valuable choice for polyethylene wear in metal-backed unicompartmental knee arthroplasty?

Alexandre Lunebourg · Sébastien Parratte · Alexandre Galland · François Lecuire · Matthieu Ollivier · Jean-Noël Argenson

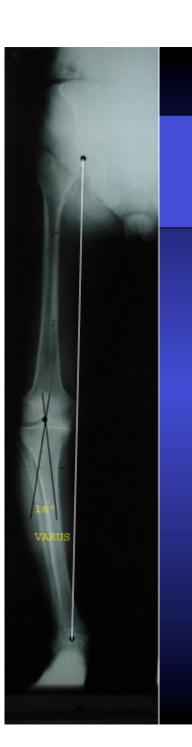
Received: 3 June 2014 / Accepted: 15 October 2014


Patient: Customization

Compared to the 70' the same 65-year old patient having TKA in 2016:

- Will be 20% heavier
- Will have 25% longer life expectancy with his implant
- Will perform 20% more activities, including those in flexion

A personalized solution for each patient...for

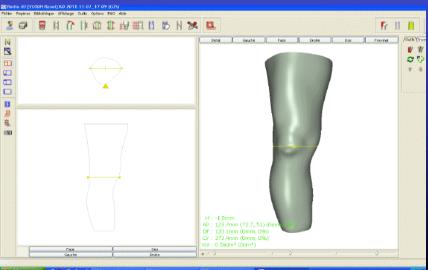


Peri-operative management

- DVT Prophylaxis: LMWH, oral
- Multimodal Pain Control: Regional anesthesia, Nerve block, Intra-articular injection
- Bleeding control: Tranexamic acid, ferritin, bleeding kinetics
- Fast-track

Perioperative management based on kinetics of bleeding during total primary arthroplasty. Irisson E, Kerbaul F, Parratte S, Hemon Y, Argenson JN, Rosencher N, Bellamy L. Ann fr Anesth Reanim 2013;32:170-4

CHANGES IN MY APPROACH TO THE COMPARTMENTAL KNEE



Full Limb View: mechanical axis origin of the deformity?

Role of Unloading-Braces

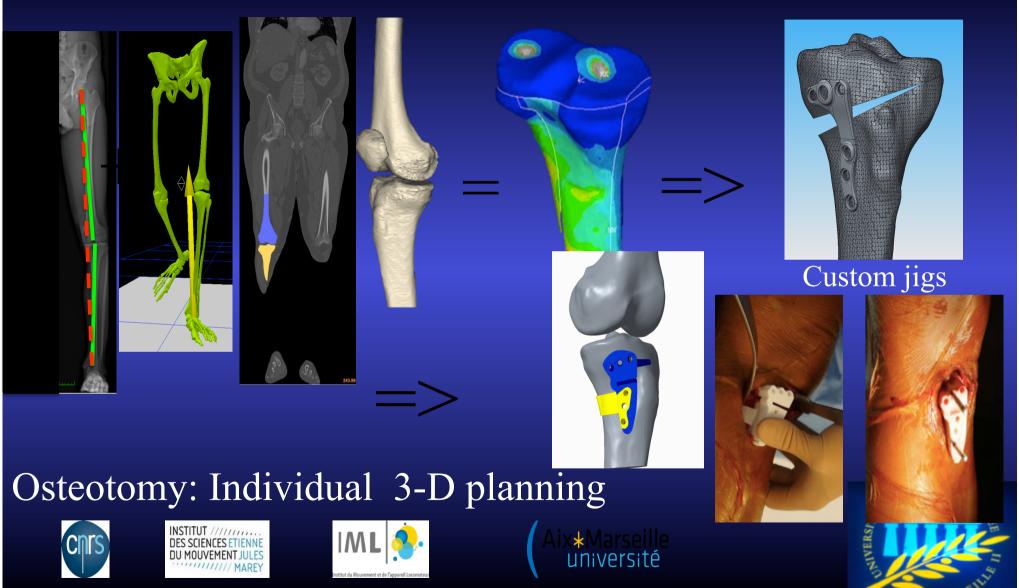
Role of HTO

High Tibial Osteotomy

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 452, pp. 91-96 © 2006 Lippincott Williams & Wilkins

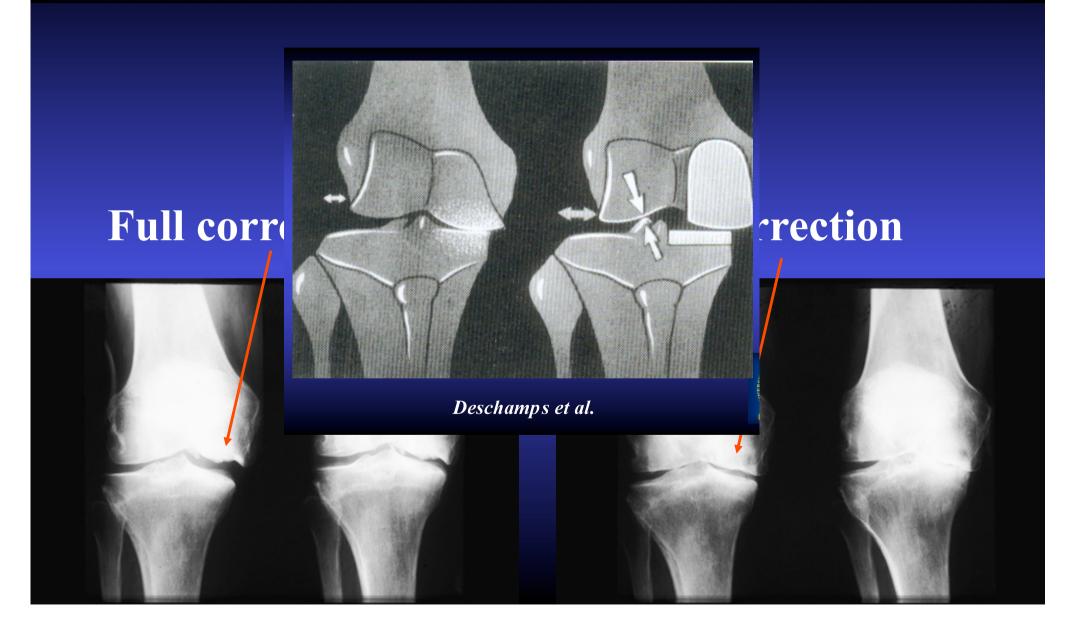
A 12–28-Year Followup Study of Closing Wedge High **Tibial Osteotomy**

Xavier Flecher, MD; Sebastien Parratte, MD; Jean-Manuel Aubaniac, MD; and Jean-Noël A. Argenson, MD


Parameter	Value	Hazard Ratio	p Value
Gender	female	1.07	p = 0.8
Operative age	> 50	2.1*	p = 0.014
BMI	< 30	0.27*	p = 0.02
Postoperative valgus angle	> 6°	0.46*	p = 0.02
Ahlback	< 3	0.29*	p = 0.01

15 years

New technologies for HTO



Consensus Statement on Indications and Contraindications for Medial Unicompartmental Knee Arthroplasty

Keith R. Berend, MD¹; Michael E. Berend, MD²; David F. Dalury, MD³; Jean-Noel Argenson, MD⁴; Chris A. Dodd, MD⁵; and Richard D. Scott, MD⁶

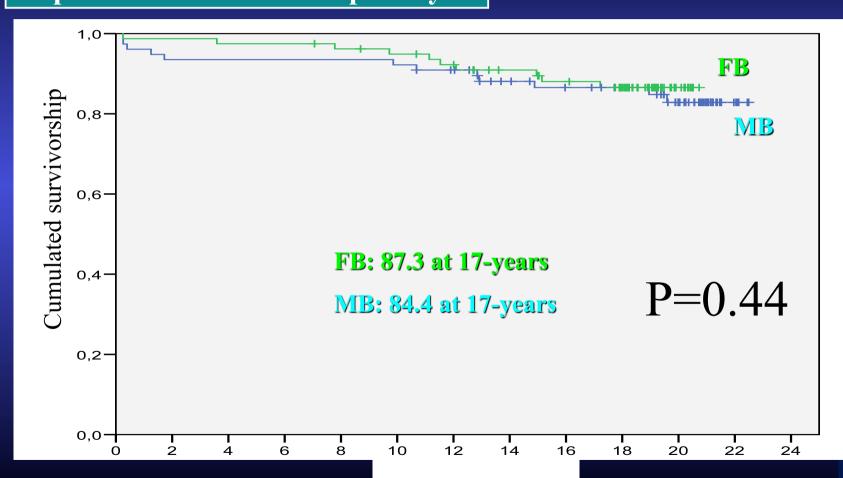
Previous work, now nearly 30 years dated, is frequently cited as the "gold standard" for the indications and contraindications for medial unicompartmental knee arthroplasty (UKA). The purpose of this article is to review current literature on the indications and contraindications to UKA and develop a consensus statement based on those data. Six surgeons with a combined experience of performing more than 8,000 partial knee arthroplasties were surveyed. Surgeons then participated in a discussion, emerging proposal, collaborative modification, and final consensus phase. The final consensus on primary indications and contraindications is presented. Notably, the authors provide consensus on previous contraindications, which are no longer considered to be contraindications. The authors provide an updated and concise review of the current indications and contraindications for medial UKA using scientifically based consensus-building methodology. (Journal of Surgical Orthopaedic Advances 24(4):252–256, 2015)

UKA: Frontal Instability

Knee Function after UKA?

• Function restoration

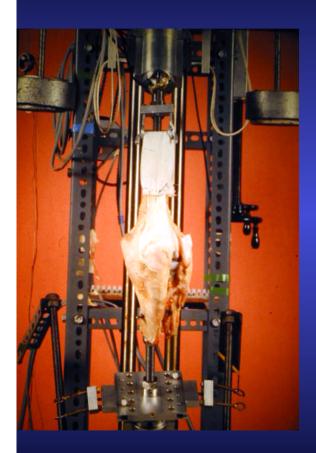
Clin Orthop Relat Res (2012) 470:61–68 DOI 10.1007/s11999-011-1961-4


SYMPOSIUM: PAPERS PRESENTED AT THE ANNUAL MEETINGS OF THE KNEE SOCIETY

No Long-term Difference Between Fixed and Mobile Medial Unicompartmental Arthroplasty

Sebastien Parratte MD, Vanessa Pauly MS, Jean-Manuel Aubaniac MD, Jean-Noel A. Argenson MD

Survival Results?

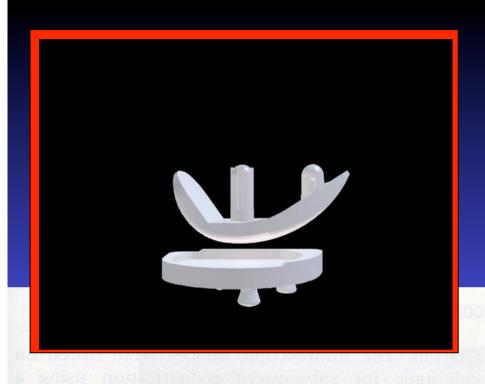

Kaplan-Meier survivorship analysis

FU Years

Knee: Six degrees freedom rig

Argenson and O'Connor, 1990

A full load (2 X BW)


physiologic lunge activity was simulated using a

KUKA KR500

6 degrees of freedom robotic arm: Force-

torque control were taken from joint kinetics from live patients during the lunge activity 2010

The Journal of Arthroplasty Vol. 17 No. 8 2002

In Vivo Determination of Knee Kinematics for Subjects Implanted With a Unicompartmental Arthroplasty

Jean-Noël A. Argenson, MD,* Richard D. Komistek, PhD,† Jean-Manuel Aubaniac, MD,* Douglas A. Dennis, MD,† Eric J. Northcut, MS,† Dylan T. Anderson,† and Serge Agostini, MD‡

The 2015 John Insall Award

Compare in a prospective randomized study PSI versus Standard technique

1.Radiological: NO DIFFERENCE

2.Function: NO DIFFERENCE

3.Gait: NO DIFFERENCE

Clin Orthop Relat Res DOI 10.1007/s11999-015-4259-0

SYMPOSIUM: 2015 KNEE SOCIETY PROCEEDINGS

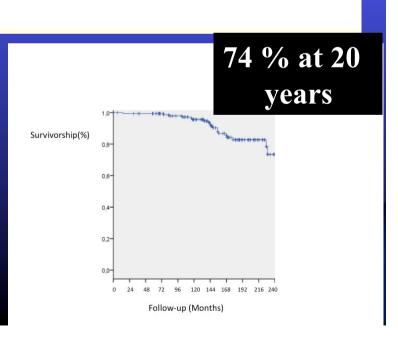
John Insall Award Paper

No Functional Benefit After Unicompartmental Knee Arthroplasty Performed With Patient-specific Instrumentation: A Randomized Trial

Matthieu Ollivier MD, Sebastien Parratte MD, PhD, Alexandre Lunebourg MD, Elke Viehweger MD, PhD, Jean-Noel Argenson MD, PhD

Discussion

COPYRIGHT © 2013 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED


Modern Unicompartmental Knee Arthroplasty with Cement

A Concise Follow-up, at a Mean of Twenty Years, of a Previous Report*

Jean-Noel A. Argenson, MD, Guillaume Blanc, MD, Jean-Manuel Aubaniac, MD, and Sebastien Parratte, MD

Investigation performed at the Institute for Locomotion, Aix-Marseille University, Marseille, France

94 % at 10 years

What about Lateral UKA?

- Primary Osteoarthritis (valgus): 24 knees
- Post-traumatic: 12 knees
- Avascular Osteonecrosis: 4 knees

<u>Lateral Unicompartmental Knee Arthroplasty Relieves Pain</u> and Improves Function in Posttraumatic Osteoarthritis.

Lustig S, Parratte S, Magnussen RA, Argenson JN, Neyret P. Clin Orthop Relat Res. 2012 470: 61-8

Patellofemoral Arthroplasty

An Update

Jean-Noël A. Argenson, MD; Xavier Flecher, MD; Sebastien Parratte, MD; and Jean-Manuel Aubaniac, MD

- 1. Primary Arthritis with no F-Tdeformity
- 2. P-F Instability with aligned extensor mechanism
- 3. Post-traumatic: good mobility, no patella barra

Anterior Cut

Rotation: Whiteside line

More than one compartment?

S Parratte JM Aubaniac JN Argenson

Original article

Orthopaedics & Traumatology: Surgery & Research: OTSR 2015;101:547-52

Is knee function better with contemporary modular bicompartmental arthroplasty compared to total knee arthroplasty? Short-term outcomes of a prospective matched study including 68 cases

S. Parratte^{a,*}, M. Ollivier^a, G. Opsomer^b, A. Lunebourg^a, J.-N. Argenson^a, E. Thienpont^b

^a Institut du mouvement et de l'appareil locomoteur, UMR CNRS 787/AMU, hôpital Sainte-Marguerite, CHU Sud, 270, boulevard de Sainte-Marguerite, 13009 Marseille, France

b Département de chirurgie orthopédique, cliniques universitaires Saint-Luc, avenue Hippocrate 10, 1200 Brussels, Belgium

UKA: easy revision?

Revision of UKA: Is There a Difference Compared to Primary TKA and Revision TKA?

Parratte S, Lunebourg A, Pauly V, Flecher X, Aubaniac JM, Argenson JN

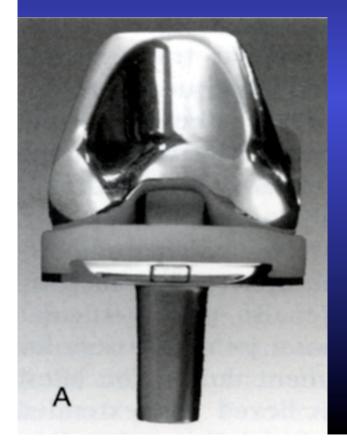
Institute for Locomotion
Center for Arthritis Surgery
Sainte-Marguerite University Hospital,
Marseille, France

AAOS 2013 Chicago JOA 2015;30:1985-9

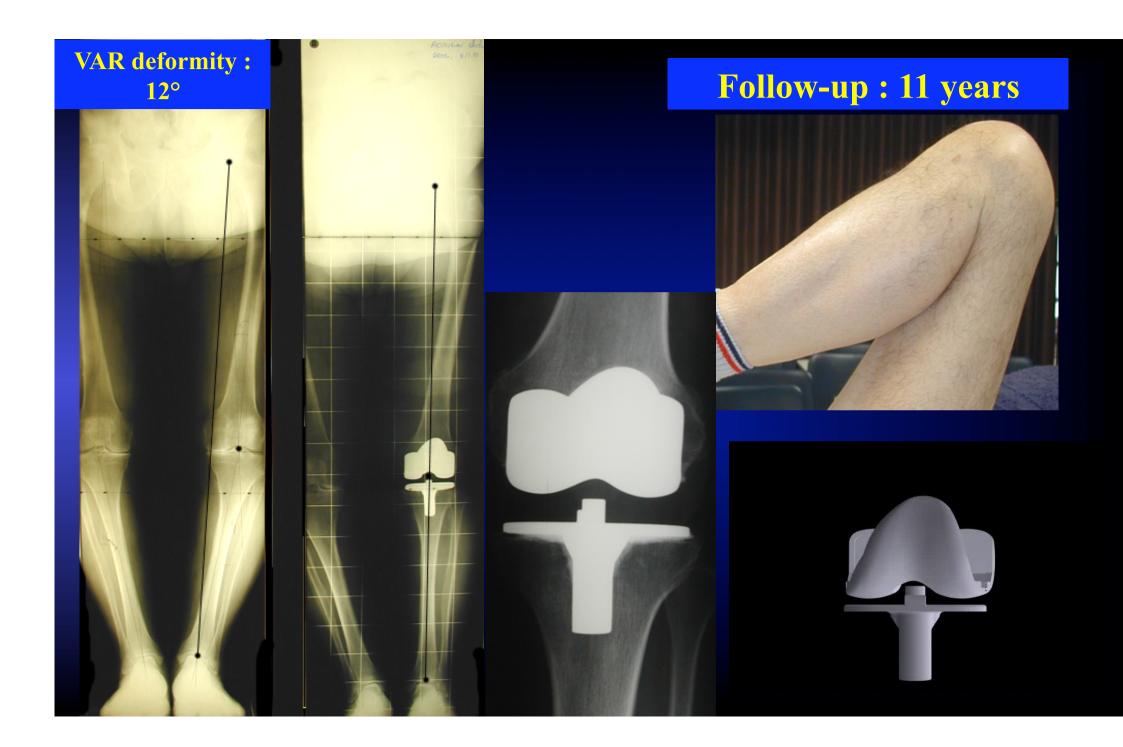
Conclusions

• Results of TKA after UKA: not as good as for a primary TKA

Rev UKA easier than a revision TKA and more bone stock


• Rate of re-revision: Rev-TKA > Rev-UKA

When you do a UKA: do it for a long time!


CHANGES IN MY APPROACH TO THE TOTAL KNEE

Improving design of TKA

COPYRIGHT © 2012 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED

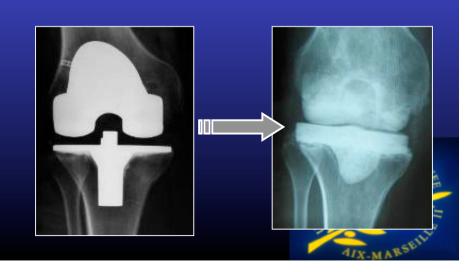
The Outcome of Rotating-Platform Total Knee Arthroplasty with Cement at a Minimum of Ten Years of Follow-up

Jean-Noel A. Argenson, MD, Sebastien Parratte, MD, Abdullah Ashour, MD, Bertrand Saintmard, MD, and Jean-Manuel Aubaniac, MD

Investigation performed at the Aix-Marseille University, Center for Arthritis Surgery, Marseille, France

639

THE JOURNAL OF BONE & JOINT SURGERY - JBJS.ORG VOLUME 94-A - NUMBER 7 - APRIL 4, 2012 ROTATING-PLATFORM TOTAL KNEE ARTHROPLASTY WITH CEMENT AT MINIMUM OF TEN YEARS OF FOLLOW-UP



Results

Revision

- 1 revision for failure MCL after fall
 - revision at 12 months
- 1 revision for infection
 - previous surgery ++
 - -18 months
 - -2 stage revision

Survival at 10 years 98.3% considering all revisions

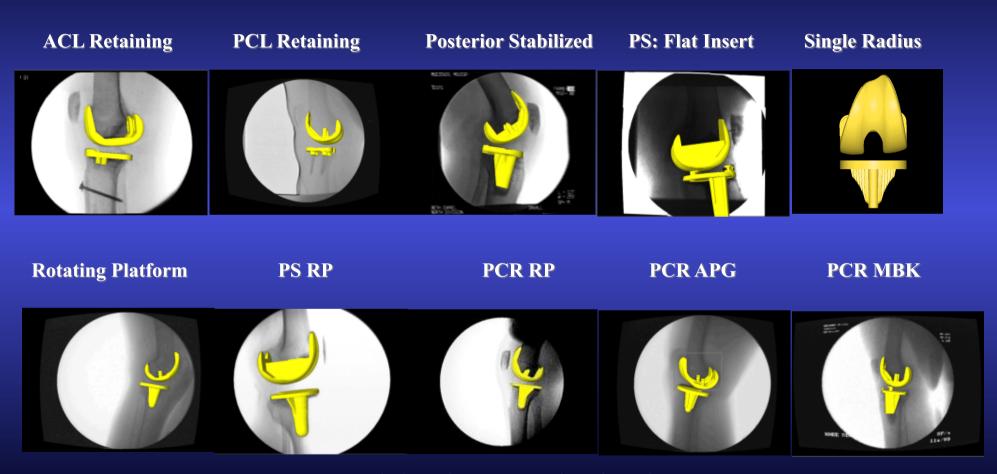
Long term Results TKA

Revue de chirurgie orthopédique et traumatologique (2013) 99, 321-326

ELSEVIER MASSON

MÉMOIRE ORIGINAL

Analyse de survie de la prothèse totale de genou à un recul minimum de dix ans : une étude française multicentrique nationale portant sur 846 casth


Survival analysis of total knee arthroplasty at a minimum 10 years' follow-up: A multicenter French nationwide study including 846 cases

J.-N. Argenson^{a,*}, S. Boisgard^b, S. Parratte^a, S. Descamps^b, M. Bercovy^c, P. Bonnevialle^d, J.-L. Briard^e, J. Brilhault^{f,g}, J. Chouteau^h, R. Nizardⁱ, D. Saragaglia^j, E. Servien^k, la Société française de chirurgie orthopédique et traumatologique (SOFCOT)^l

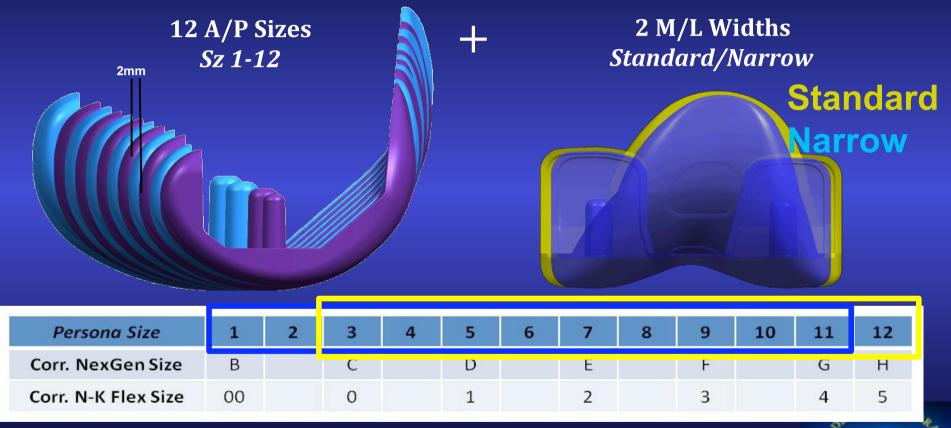
^a Service de chirurgie orthopédique, hôpital Sainte-Marguerite, CHU de Marseille, 270, boulevard Sainte-Marguerite, 13009 Marseille, France

^b Service de chirurgie orthopédique, hôpital Gabriel-Montpied, CHU de Clermont-Ferrand, 56, rue Montalembert,

Design Considerations Related to Anatomy or Kinematics?

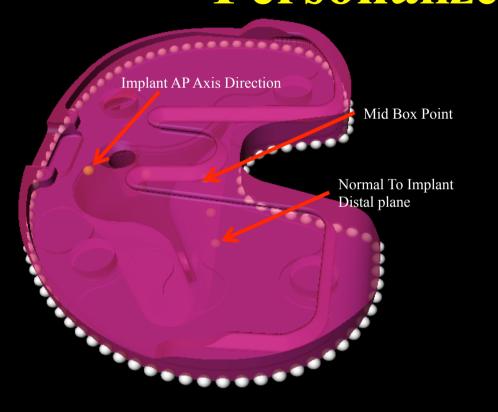
Richard D. Komistek, Ph.D.
University of Tennessee, Knoxville, TN

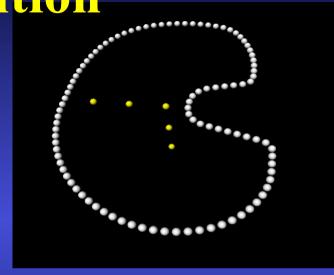
Bone Atlas: Morphology

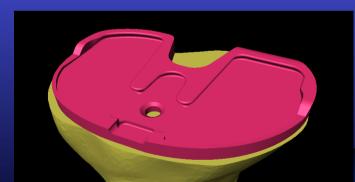

	Ant. ML	Post. ML	TEA ML	Medial AP	Lateral AP	Central Height	AP Angle	Medial Z- Height
Male	36.3	53.6	86.6	66.9	68.5	59.9	5.20	5.08
Female	31.9	47.9	77.2	60.6	63.2	55.1	7.59	3.67
Male Std. Dev.	3.71	3.77	3.83	3.66	2.78	2.94	2.30	1.76
Female Std Dev. Difference	3.43	3.52	3.55	3.07	3.02	2.99	3.15	1.32
(μ _{m-} μ _f)	4.35	5.66	9.41	6.28	5.28	4.79	-2.39	1.41
T-Test	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01

Automatic methods for characterization of sexual dimorphism of distal adult femora. *Comput Methods Biomech Biomed Engin. 2007 Dec;* 10(6):447-6. M.Mahfouz, R. Booth, B.Merkl, E.Fatah, JN. Argenson.

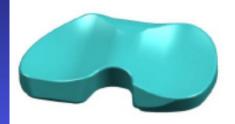
Personalized Fit

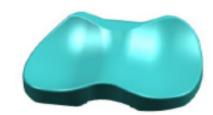

Sizing/Shape Refinements


High-Fidelity Femoral Sizing



Optimizing standard design for a Personalized solution


 Align Implant AP axis and Distal plane normal to bone projected AP axis and resection plane normal


Intra-operative Continuum of Stability

Cruciate Retaining

Ultracongruent

Posterior Stabilized (CPS)

•Maintain High

flexion

Kinematics

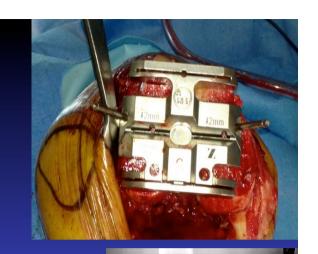
Asymmetric femoral condyles mated with asymmetric art surfaces

Reduce sharp edge contact MCL/LCL Increased
lateral
mobility
Enhanced
post
geometry
1mm

increments

& CCK
•Moderate V/V & rotational

constraint b/t PS

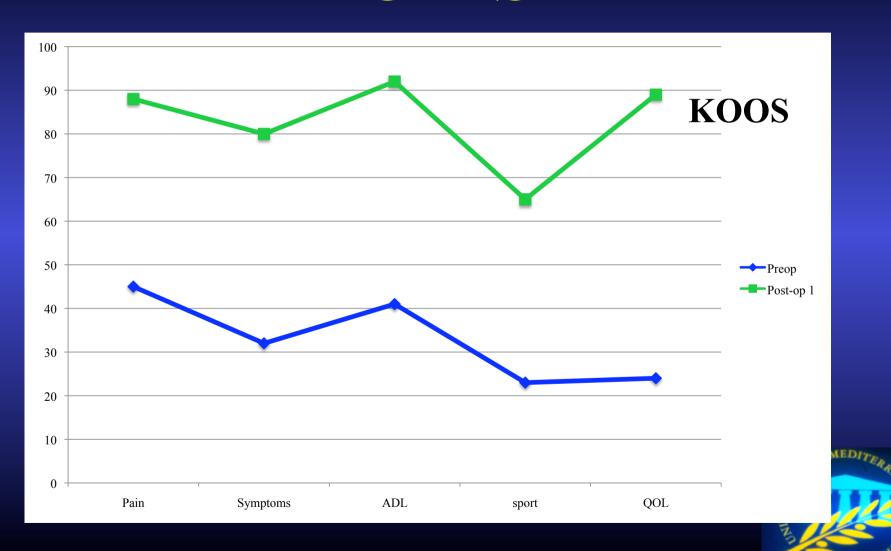

•1mm increments

•1mm increments •2mm increments

constraint

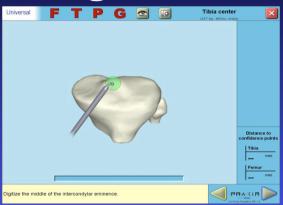
Experience Persona

100 first Persona, min. 2 Y FU



No tourniquet, medial parapatellar approach

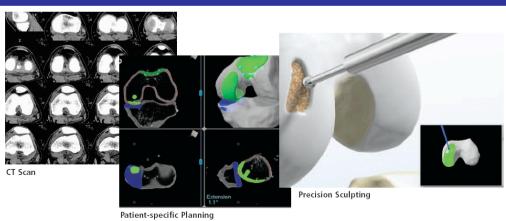
Persona® The Personalized Knee System



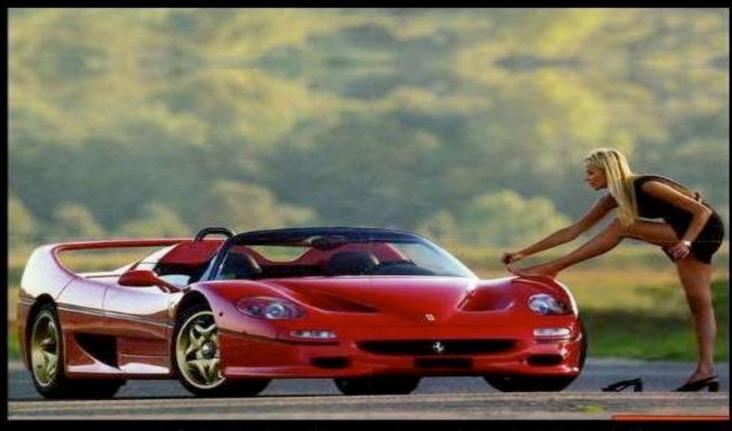
PROMS

Solutions in 2020?
Patient Specific

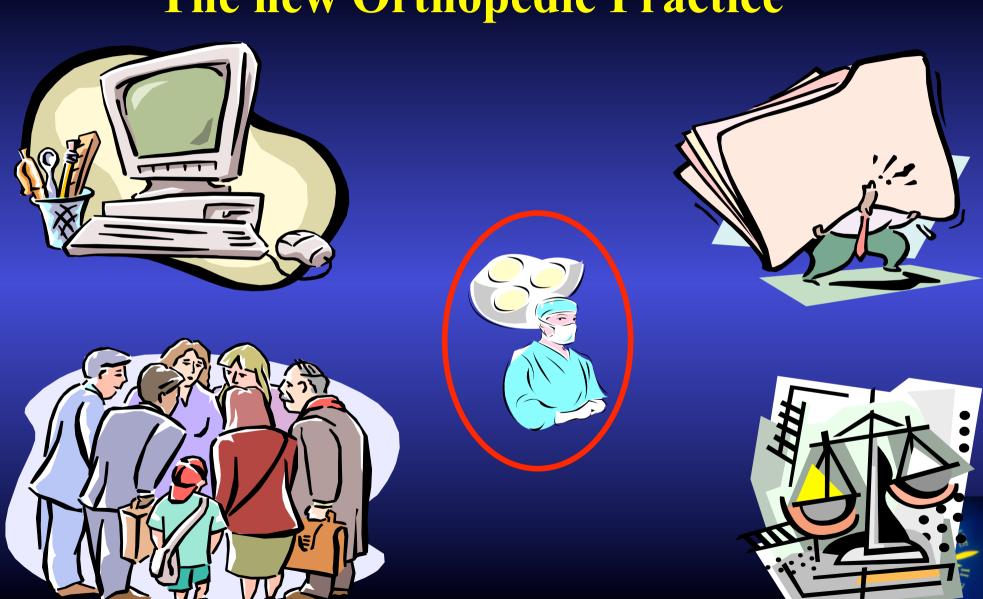
Navigation



« Intelligent cutting guides »



Robot


Cost?

FINANCIAL PLANNING LONG TERM: THE CAR IS CHEAPER

The new Orthopedic Practice

CONCLUSION

- We know the 10 to 15 year results of UKA and TKA based on correct patient selection
- We need to evaluate and match every patient expectation
- We need to incorporate in our arthroplasty practice the pain and bleeding control technologies
- Design evolutions and reproducible instrumentation can match every surgeon expectations

EKS Open Meeting 19-21 April, 2017 London, UK

